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Abstract 
 
This paper presents an overview for a Computer-Aided Design and Patterning of Tensioned Fabric 
Structures. After a brief introduction to tensioned structures and their applications in building, a description 
of tension fabric structure design is presented. A computer program called Mathform, which is used for 
analysis design and patterning of tensioned fabric structures utilizing the Dynamic Relaxation method, is 
also discussed. Finally two design examples created with the Mathform program are presented. 
 
Introduction [ASI 00] 
 
Tension fabric structures are one of the most exciting and rapidly developing technologies in the building 
industry today. Material advances in coated woven textiles combined with design and numerical techniques 
for developing membrane structures have yielded a new building form for permanent architectural 
applications (see figure 1). Among them are complete architectural fabric enclosures for buildings, airport 
terminals, restaurants, and other public spaces: large span structures such as stadiums, arena enclosures and 
retractable membrane systems for covering indoor and outdoor spaces.  

   
Figure 1- Examples of Membrane Forms 
 
Perhaps the most exciting aspects of fabric structures are the remarkable variety of anticlastic forms that 
can be realized. These include hyperbolic shapes, saddles, cones, domes, vaults, and waved and plate types. 
The choices are endless. The range of forms is augmented through the use of support and restraint elements 
such as cables, masts, trusses, and rigid nodes. Cable-membrane structures are referred to as “form active 
systems” since the form being derived from the direct relationship between force and cable structures. This 
concept may be referred to as "form follows force". 



Design of Tension Fabric Structures 
 
The design of tension fabric structures begins with a form conceived by the designer. A drawing or a 
physical model usually represents this form. The desiger’s form provides basic concept and support 
conditions which allow an engineer to find the true shape of the structure. (It is interesting to note the 
concept of form finding and not form giving). 
 
The engineer usually employees the following approaches for form finding: 
 
Qualitatively - through physical modeling historically used by designers like Frei Otto to analyze and 
design membrane structures. Physical modeling involves creating a scaled model made of materials, which 
depict the actual structure (e.g. textile cloth for the fabric, wire for edge cables etc.). If the structural 
properties of the material of the model are known this model can also be a structural testing model for load 
analysis. The great advantage of the physical modeling method is the explanation of the physical behavior 
of the actual structure. 
 
Quantitatively[CAP97] - using mathematical tools. Mathematics does not explain physical behavior; it 
only describes it [SAL75]. However, in recent years, with the help of powerful computers, engineers can 
easily solve nonlinear equations and track out complex trajectories that cannot be drawn. Mathematical 
descriptions are now so efficient that powerful computers can easily and fully conceive and explain 
membrane structure behavior. Computer simulation of the structure has become a valuable tool to help the 
designer find realistic shapes. 
 
The design of membrane structures regardless of the methods used, has three steps:  

1) Form-finding or Initial geometry formulation  
2) Engineering analysis and membrane design  
3) Patterning 

 
Computational methods 
 
Tension fabric structures can be designed either by using physical modeling or computer methods. Due to 
the variety of alternate design solutions to a fabric problem that can be quickly achieved utilizing 
computers, computer methods would be the favored tool of engineers for the design of fabric structures. A 
number of computer methods have been developed for analysis of geometrically non-linear fabric 
structures, which include shape (form-finding). The following is a brief description of a computer program, 
Mathform. The program code is being written in Visual Basic and embedded into AutoCAD. It uses 
Microsoft Access as the backend storage. The minimum hardware requirement for running Mathform is a 
Pentium processor PC (or higher) with a Windows operating system. Note that the program can be utilized 
for analysis of space truss structures, however, the emphasis here is on the application of the program for 
the analysis and design of fabric structures. 
 
Mathform Program Description 
 
The analysis portion of the Mathform program is based on the published works of  Dr. Michael Barnes 
[BAR77] [BAR86] [BAR84] and the work of Dr. Tajav Deganayar [DEG], who was one of the first to 
implement the dynamic relaxation method in the United States to develop a software program called 
SOFTSPACE (written in FORTRAN). This program has been adopted by designers and engineers at 
Advanced Structures Inc. to design fabric membrane structures. 
 
Mathform is a nonlinear analysis and patterning program. The analysis section of the program is based on 
the dynamic relaxation method. The basis of the method is a step-by-step algorithm tracing the motion of a 
structure until the structure reaches equilibrium due to damping. The dynamic relaxation methods solve the 
geometric nonlinear problem of form finding by equating it to a dynamic problem. The dynamic problem is 
then solved using the principle of dynamics. It is suitable for computer simulations of tensile structures. 
The method can easily take into account nonlinear behavior resulting from large deformations. 



The analysis of fabric structure by Mathform utilizing Dynamic Relaxatation with 
kinetic damping involves the following steps:

1- Establish a coordinate system with nodal point coordinates and consider a line with two connecting 
nodes I and K  in an arbitrary location in space, as a three dimensional linear elastic 
truss element. Let XYZ form the global coordinate system as shown in figure 2.

2- Establish element types to be used for modeling various elements.
a)         Constant tension  fabric element (usually used during form finding).
b)         Constant force density  fabric element (usually used during form finding).
c)         Tension only element (capable of taking only tension).
d)        Three dimensional truss element (capable of taking both tension and compression).
e)         Slack element (zero stiffness element).

3- Generation of element properties, connectivity.
a)       Pretension (T).
b)       Modulous of elasticity (E).
c)       Element length from node connectivity (RL).

4- Define support  boundary condition.

5- Consider a simple network of four cables as shown in figure-3.
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6- Generate mass matrix for each element.
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7- Compute mass matrix for each node by summing of the mass of individual member coming to the node.
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8- Compute the velocity at time T+t.
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9- Compute displacement D at the end of time interval  t. 
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12- Compute new tensions at the end of time interval t.
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Residual force at node i in the direction being considered. R'

n

F'�  Sum of the internal member  forces in the direction being considered.

P Applied load at node in the direction being considered.

Any residual force will be attributed to the dynamic behaviour at the node.
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M i( ) Mass at node i

a Acceleration of the node in the time interval  t.

V
T Initial  velocity of the node at the start of time interval  t.



13- Update residuals at node i at the end of time interval t.
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14- Check for local peak in kinetic energy.  
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 15- If KEnew is found to be less than KEold than the peak has been passed and velocities are set to zero 

(Figure 4 depicts a typical kinetic energy peaks & reset).      

16-  The first velocities on restarting the process (by assuming the peak to occurs at  mid point
        of  the first time step) are given by:
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Figure 4 Kinetic Energy Plot
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17-Repeat step 8 to update velocities until the next energy peak. Iterate until the solution is  arrived at when 
motion of a node comes to rest due to damping (i.e. the residual forces are sufficiently small) and update the final 
geometry.  
18- Using the new geometry, apply loads and desired load combinations. 

19- Solve system of equations by iteration and find nodal displacement and member forces.

20- Review the results and, if necessary, reanalyze the modifying input parameters.

Application of Mathform for form finding:

In the Mathform form-finding process the form could be found either by specifying a constant tension or by 
specifying a force density ratio (given by tension/length) during step-12 while updating tensions. Specifying 
constant tension would give minimal surface and using force density would form a curvature in form finding.



The following is a flowchart for the program. 
START

READ IN THE GEOMETRY FROM ACAD, ESTABLISH COORDINATE
SYSTEM AND GENERATE NODAL POINT COORDINATES
1) NUMBER OF MEMBERS(M)  2) NUMBER OF JOINTS (N)

 3) NUMBER OF SUPPORT RESTRAINS(NR)

READ THE MATERIAL PROPERTIES
AND ELEMENT PRETENSION

CONVERGED, COMPUTE FINAL REACTIONS &
STATIC CHECK

CALCULATE ORIGINAL LENGTH OF ELEMENTS

SET MEMBER INFORMATION
1) DESIGNATION OF J END OF MEMBER (JJ)

 2) DESIGNATION OF K END OF MEMBER (JK)
3) CROSS SECTIONAL AREA (A)

 4) ELEMENT LENGTH (EL)
5) ELEMENT PRETENSION (P)

6) MODULUS OF ELASTICITY (E)

SET THE JOINT RESTRAINTS

SET THE JOINT RESIDULES

COMPUTE THE MASS ARRAY

GENERATE THE VELOCITY AND K.E. VECTORS

COMPUTE THE VELOCITY AT A NEW TIME STEP

UPDATE COORDINATES &
RESIDUALS

UPDATE AUTOCAD MODEL

STOP

COMPUTE THE NEW  ELEMENT TENSIONS & RESIDUALS

TRUE

READ NODE LOADS, SET TO 0 FOR
FORM FINDING

GET COORDINATES FROM AUTOCAD MODEL

ITIITILAZE THE LOAD, DISPLACEMENT, VELOCITY, AND THE MASS VECTORS

COMPUTE THE DISPLACEMENT AT A NEW TIME STEP

KE OLD > KE NEW

TRUE

COMPUTE KINETIC ENERGY USING CURRENT AND PREVIOUS VELOITIES.

RESET VELOCITY AND RESTART WITH REVISED VELOCITY

FALSE

 
 
Patterning 
 
Fabric structures usually cover a three-dimensional space even though the membrane cover by itself is a 
two dimensional surface. Patterning is a process of mapping a curvilinear surface to a flat surface or, 
mathematically speaking, it is the process of transforming a two-dimensional surface in a three-dimensional 
coordinate system into a two-dimensional coordinate system with geometrical conformity. 
 
The patterning of fabric structures using Mathform involves the following steps: 
 
1) Triangulate the model using Delauney’s [HAN86] triangulation and using the coordinates of the 

triangles to draw 3dface in the AutoCAD model. 
2) Flatten of selected strips from the AutoCAD 3Dface model by transforming 3Dfaces in X, Y, Z 

coordinates to 3Dfaces in X, Y plane coordinate.  
3) Calculate flattened strip (free of pretension) by applying appropriate compensation factor in the warp 

and fill direction of the fabric strip 
4) Create compensated strip drawings for fabrication. 



Design of Membrane Structures using Mathform 
 
Mathform is used for three purposes: a) As a form finding tool b) As an engineering tool and c) As a 
patterning tool.  
 
The following is a brief explanation of how to execute Mathform.  
 
In order to run Mathform, the fabric model is generated in Auto CAD. The process of generating a three 
dimensional tension membrane model involves creating a flat finite element fabric net model, with 
properties in warp and fill direction that correspond to the behavior of the real fabric. The fabric net mesh is 
structured and uniform. Edge cables, masts, webbing or fabric reinforcement, having different properties, 
are modeled as a sequence of different line elements. The support boundary conditions are applied by 
restraining the selected nodes (figures 5 & 7). The attributes for elements like the material property and 
pretension are specified. The form finding process, which is either minimal surface or force density method 
selection, completes the model generation process for form-finding. 
 

 
Form-finding 
Form-finding, or initial geometry formulation, provides a detailed geometric description of the structure.  In 
this phase, the shape of the structure is determined by assigning the proper prestress forces to the fabric 
network and specifying the support boundary condition such as: masts, arches, perimeter beams, etc.  The 
initial shape of the fabric is approximated (figures 5 & 7) and then the pretension analysis establishes the 
final shape of the structure (figures 6 & 8).  
 
Engineering analysis and membrane design 
After the final shape of the structure is computed through form finding, the structure is loaded for different 
load cases. Due to the lightweight of the structure, the dead and seismic loads are neglected and wind or 
snow loads usually govern the design. Due to the nonlinear nature of the problem, the principle of 
superposition does not hold.  Hence the load analysis should be carried out independently for each load 
case. The computed forces in the fabric can be used to compare against the allowable values. Critical 
reactions for the load case in the computer runs are used for the design of the supporting structure. The 
maximum displacement of the structure is used to compare against the allowable deflection per the 
appropriate code. 



Patterning 
The form finding model is triangulated and 3Dfaces are drawn on top of form-found model as shown in the 
figure 9. This process is called 3D facing. After 3Dfaceing is complete, strips are selected for flattening. 
The following criteria are considered during strip selection [HAN86]: 
 

 
• Visual and architectural effects usually determine the orientation of the strips (seam alignment). 
• Parallel orientation of these strips is suitable for saddle-shaped (Hyper like) surface. 
• Radial orientation of the strips must be applied for radial geometry structures. 
• Orientation of each strip has to be fixed in such a direction that the warp and fill follow the direction 

used in the form finding model. 
• The width of the membrane strips depends on the manufactured fabric width and on minimizing the 

waste of material. 
After flattening the stress-free lengths (slack length) of all cables, membrane pieces are determined by 
applying the required compensation refer to figures 10, 11 & 12. 

 
Conclusion 
Tension fabric structures are a developing technology, which gives architects and engineers the ability to 
experiment with forms and create exciting solutions to conventional design problems. Tension fabric 
structures can be designed either by using physical modeling or computer methods. The possibility of 
realizing a diverse range of forms in a short period of time makes computer simulation the preferred 
method of designing tension fabric structures in the future. Mathform is one of the few fabric structure 
analysis software programs in the United States today. Its fast solver, friendly interface and integration 
within AutoCAD allow engineers to come up with solutions to numerous structural fabric applications, 
from the simple to the most complex. 
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